

Behavioral Dynamics Approach to Collective Crowd Behavior

William H. Warren

Dept. of Cognitive, Linguistic & Psychological Sciences
Brown University

Thanks to NIH, NSF

Bottom-up approach Experiment-driven Vision-based model

Collective Behavior

(global pattern)

Individual Behavior

(local coupling)

- Bottom-up, experimentally-driven model of crowd dynamics
- Accounts for both local trajectories and global motion
- Collective motion emerges from experimentally-specified local interactions

Haken (1977)

Behavioral Dynamics Framework

- Coupled dynamical systems
- On-line control, emergent behavior
- First pass: Behavioral model
- Second pass: Visual control laws

Our story thus far...

Elementary behaviors

- 1. Goal
- 2. Obstacle
- 3. Moving target
- 4. Moving obstacle
- 5. Following...

- Study each basic behavior
- Model as a nonlinear DS
- Combine components to model complex situations

Pedestrian Model

- · Goals behave as attractors of heading
- Obstacles behave as repellers of heading
- Velocity-based 'force' model (2nd-order)

Pedestrian Model

- · Goals behave as attractors of heading
- · Obstacles behave as repellers of heading
- · Velocity-based 'force' model (2nd-order)

1 Goal

· Null heading error

5 Braking

Lee (1976), Yilmaz & Warren (1995)

· Tau-dot model

2 Obstacle

· Increase heading error

3 Moving target

ager

· Constant bearing strategy

4 Moving obstacle

· Avoid constant bearing

Binary Interactions: Following

Alignment dynamics

- How do neighbors coordinate their speed and heading?
- Local coupling

Binary Interactions: Following

Alignment dynamics

- · How do neighbors coordinate their speed and heading?
- · Local coupling

Conclusion 1: **Alignment Dynamics**

- Successfully model binary interactions as simple DS
- · Vision model fits better
- Extend to multiple interactions in crowd?

6 Speed

Rio, Rhea & Warren (2014)

mean x-r = 0.68

· Compared 6 models

 Follower matches the leader's speed

mean r = 0.67

7 Heading

Dachner & Warren (2014)

· Leader turns twice mean x-r = 0.92 delay = 984 ms

 Compared 4 models Follower matches the leader's heading

Visual Control Laws for Following

Dachner & Warren (2017)

6 Speed

Rio, Rhea & Warren (2014)

 Leader changes speed

mean
$$x-r = 0.68$$
 delay = 420ms

$$\ddot{x}_F = c \left(\dot{x}_L - \dot{x}_F \right)$$

- Compared 6 models
- Follower matches the leader's speed

mean r = 0.67

7 Heading

Dachner & Warren (2014)

· Leader turns twice

mean x-r =
$$0.92$$
 delay = 984 ms

$$\ddot{\phi}_F = -c\sin(\phi_L - \phi_F)$$

- Compared 4 models
- Follower matches the leader's heading

mean r = 0.72

Visual Control Laws for Following

Dachner & Warren (2017)

Modeling Results

 Asymmetry in response to expansion

- Decreased response with distance
- Vision model fits human data better than behavioral model (p<.001)
- Jointly null expansion and ∆bearing, depending on leader position

Bottom-up approach Experiment-driven Vision-based model

Collective Behavior

(global pattern)

Individual Behavior

(local coupling)

- Bottom-up, experimentally-driven model of crowd dynamics
- Accounts for both local trajectories and global motion
- Collective motion emerges from experimentally-specified local interactions

Haken (1977)

Local Neighborhood

- How is a pedestrian influenced by multiple neighbors?
- Many models, little evidence

Manipulate Virtual Crowd

- Participant "walks with" crowd
- Perturb heading or speed of subset S
- Measure lateral deviation or speed change

Manipulate Virtual Crowd

- · Participant "walks with" crowd
- · Perturb heading or speed of subset S
- · Measure lateral deviation or speed change

Exp. 1: Superposition

(Rio & Warren, 2014)

· How are multiple neighbors combined?

- Crowd = 12 neighbors
- Vary subset size (S = 0-12)
 Two distance zones

Exp. 2: Metric or Topological Neighborhood?

Low Density: stronger response

- Crowd = 12 neighbors
 Perturb nearest neighbors (S=0,2,4)
 Vary density, hold NN at constant distance

Exp 3: Fixed or Variable Radius?

(Emily Richmond & Trent Wirth)

- · Vary crowd distance (2-8m)
- Vary crowd size (2,4,8)
- Perturb all - N=12

Exp. 4: Double Decay Hypothesis

rapid decay with distance within crowd

gradual decay with distance to crowd

· Neighborhood results from two decay rates

Exp. 1: Superposition

(Rio & Warren, 2014)

How are multiple neighbors combined?

Near zone: 1.5m

Far zone: 3.5m

- Crowd = 12 neighbors
- Vary subset size (S = 0-12)
- · Two distance zones
- N=10

Results

Perturb Heading

Perturb Speed

Speed Change

- Response proportional to S (p<.001)
 - consistent with superposition
- Decreases with distance (p<.001)

Decay with Distance: Human Swarm

(Rio & Warren, 2014)

- Coupling strength decays exponentially with distance (r=4m)
 - Occlusion, perspective?

Coupling Asymmetry: Human Swarm

Rio & Warren (2014)

Left-Right (m)

- Windowed X-corr
- 1s traveling window

- Unidirectional coupling
- 180° field of view

Neighborhood Model

$$\ddot{\phi}_p = -\frac{k}{n} \sum_{i=1}^n w_i sin(\phi_i - \phi_p)$$

$$\ddot{r}_p = \frac{c}{n} \sum_{i=1}^n w_i (\dot{r}_i - \dot{r}_p)$$

k = 0.81 = heading gain

c = 1.87 = speed gain

- Alignment dynamics + neighborhood
- Weighted average of neighbors
- · Weight decays exponentially with distance
- Unidirectional coupling
 - soft radius (4 m)

Model Simulations

(Greg Dachner)

Mean Time Series per Condition

- Heading perturbations: mean r = 0.82
- Speed perturbations: mean r =0.89

Simulation Results

 Neighborhood model accounts for Exp. 1

Exp. 2: Metric or Topological Neighborhood?

(Trent Wirth)

Low Density: stronger response

High Density: weaker response

- Crowd = 12 neighbors
- Perturb nearest neighbors (S=0,2,4)
- Vary density, hold NN at constant distance
- N=12

Results

- Greater response at low density (p<.05, interaction p<.05)
- Contrary to topological, consistent with metric neighborhood

Exp 3: Fixed or Variable Radius?

(Emily Richmond & Trent Wirth)

- Vary crowd distance (2-8m)
- Vary crowd size (2,4,8)
- Perturb all
- N=12

Results

- Response decreases with distance (p<.0001)
 - Radius 11-14 m!
- No effect of crowd size (ns)
 - Supports weighted average
 - · Not a fixed radius at 4m

Exp. 4: Double Decay Hypothesis

- Neighborhood results from two decay rates
 - variable radius

Manipulate distance *to* and *within* crowd

- Crowd = 12 neighbors
- Perturb near, middle, far ring (S=4)
- Vary distance to first ring (2, 4, 6m)
- N=10

Results

- Gradual decay to first ring (p<.01)
- Rapid decay within crowd (p<.001)
- Interaction (p<.001)
 - Consistent with double decay hypothesis

Double-Decay Model

$$\ddot{\phi}_p = -\frac{k}{n} \sum_{i=1}^n w_i sin(\phi_i - \phi_p)$$

$$w_i = \left(\frac{a}{e^{\eta(d_i)} + e^{\omega(d_i - d_{NN})} + a}\right)$$

 $\eta = 0.4$ decay rate to NN $\omega = 1.2$ decay rate within crowd a = 9.2 scaling constant

Two exponential decay rates:

- gradual decay to NN (r=11m): perspective?
- rapid decay within crowd (r=4m): occlusion?
- serves purpose of a topological neighborhood

Conclusio Neighborhood

- Superposition
- · Metric radius, dou
- Unidirectional cou
- Can model predict motion?

Simulation Results

 Double-decay model characterizes neighborhood

Double-Decay Model

$$\ddot{\phi}_p = -\frac{k}{n} \sum_{i=1}^n w_i sin(\phi_i - \phi_p)$$

$$w_i = \left(\frac{a}{e^{\eta(d_i)} + e^{\omega(d_i - d_{NN})} + a}\right)$$

 $\eta = 0.4$ decay rate to NN $\omega = 1.2$ decay rate within crowd a = 9.2 scaling constant

Two exponential decay rates:

- gradual decay to NN (r=11m): perspective?
- rapid decay within crowd (r=4m): occlusion?
- serves purpose of a topological neighborhood

Conclusion 2: Neighborhood Model

- Superposition
- Metric radius, double decay
- · Unidirectional coupling
- Can model predict collective motion?

Bottom-up approach Experiment-driven Vision-based model

Collective Behavior

(global pattern)

Individual Behavior

(local coupling)

- Bottom-up, experimentally-driven model of crowd dynamics
- Accounts for both local trajectories and global motion
- Collective motion emerges from experimentally-specified local interactions

Haken (1977)

The Sayles Swarm

- 16 cameras, 12m x 20m
- N=20, key scenarios

The Sayles Swarm

- · 16 cameras, 12m x 20m
- N=20, key scenarios

Conclusion 3: **Crowd Dynamics**

- · Alignment dynamics + neighborhood model = local interactions
- · Model reproduces individual trajectories and collective motion

1 Human Swarm

- · Veer L/R, stay together, 2 min
- N=16-20, density = 1m, 2m
- · Reproduce at local and global levels?

Exploratory Simulations

- Define initial conditions, let go, all agents interact
 Vary initial density, initial heading range
- · Compare single and double decay models

- · Coherent motion over a wide range of
- initial conditions
- · Wider range with Double Decay than Single Decay model

2 Counterflow

1 Human Swarm

- Veer L/R, stay together, 2 min
- N=16-20, density = 1m, 2m
- Reproduce at local and global levels?

Simulation 1

Simulation 2

Simulate interacting agents

- · initialize all with human data
- 4 'leaders' go to final positions

Components:

alignment, moving obstacle, braking

- remove moving obstacle
- generates collective motion

Globally Coherent Motion

- 38 10s segments with continuous tracking of N≥8
- · Initialize model with human data
- Dispersion = mean pairwise heading difference
- 3s traveling window
- Comparably coherent motion

Local: Individual Trajectories

- · Simulate each participant separately, with neighbors as input
- Model captures individual trajectories

Exploratory Simulations

- Define initial conditions, let go, all agents interact
- Vary initial density, initial heading range
- Compare single and double decay models

- Coherent motion over a wide range of initial conditions
- Wider range with Double Decay than Single Decay model

Sample Simulations

Parameter Map

SD of Final Heading

2 Counterflow

- Two groups, pass through
- Spontaneous lane formation

Lanes emerge from following neighbors + avoiding obstacles

 When is another pedestrian a neighbor or an obstacle?

Data Replay

Simulation

Simulate interacting agents

- alignment, braking
- opposing motion = moving obstacle

Bottom-up approach Experiment-driven Vision-based model

Collective Behavior

(global pattern)

Individual Behavior

(local coupling)

- Bottom-up, experimentally-driven model of crowd dynamics
- Accounts for both local trajectories and global motion
- Collective motion emerges from experimentally-specified local interactions

Haken (1977)

Pattern Formation

- Phase transition: shoal --> school
- Aligned neighbors recruit more individuals, pattern propagates
- Visual neighborhood as positive feedback?

Exp. 5: Noisy Neighbors

- Add noise to neighbor headings (range = ±0°- 90°) about mean crowd direction (10°, 20° turn)
- As noise decreases, participant should align more strongly with mean of virtual crowd

Concl Positive

- Greater alig neighborho stronger po
- Mechanism formation

Results

 Participants align with mean of crowd, on average (p<.001)

SD of Final Heading

- But align more reliably with crowd over trials as noise decreases (p<.001)
 - Participants are more variable than model, due to sub-sampling or biological noise

RMSE Between Model and Data for Time Series of Heading

- Participants more closely align with mean of neighborhood (model) within a trial as noise decreases (p<.001). Sub-sampling?
- When neighbors are more aligned, the participant is more strongly attracted to the common motion

Exp. 5: Noisy Neighbors

- Add noise to neighbor headings (range = ±0°- 90°)
 about mean crowd direction (10°, 20° turn)
- As noise decreases, participant should align more strongly with mean of virtual crowd

Conclusion 4: Positive Feedback

- Greater alignment within neighborhood creates a stronger positive feedback
- Mechanism of pattern formation

Bottom-up approach Experiment-driven Vision-based model

Collective Behavior

(global pattern)

Individual Behavior

(local coupling)

- Bottom-up, experimentally-driven model of crowd dynamics
- Accounts for both local trajectories and global motion
- Collective motion emerges from experimentally-specified local interactions

Haken (1977)

Next

- · Extend vision-based model to crowd
- Visual neighborhood as +feedback
 - temporal averaging, sub-sampling
- Network analysis of human swarm
- Generalize model to other scenarios
- Micro --> Mean Field --> Macro

