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Bottom-up approach ) crowd
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Claims

- Bottom-up, experimentally-driven
model of crowd dynamics

IndiVidual. BehaViOI' -Ac%'ountsjforboth local .
([oca[ COupling) trajectories and global motion

« Collective motion emerges from

) experimentally-specified local
pedestrian / = == interactions
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Behavioral
Dynamics Framework

mformatlon
x=f x)

physical Enwronment Agent control
laws é=¢le,F) a=vy(a,i) laws
\_,f,/
action
F = B(a)

« Coupled dynamical systems

« On-line control, emergent behavior
« First pass: Behavioral model

- Second pass: Visual control laws



Our story thus far...

16 Qualisys Intersense Wireless
cameras head-tracker HMD
obstacles
(5 4
o ®
. X goal
® o

Elementary behaviors

VENLab (12 x 12 m)

1. Goal

2. Obstacle . _
3. Moving target - Study each basu.: behavior
4. Moving obstacle . Model' as a nonlinear DS
5. Following.. - Combine components to

model complex situations



Pedestrian Model
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goal potential
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goal angle (rad)

- Goals behave as attractors of heading
- Obstacles behave as repellers of heading
- Velocity-based ‘force’ model (2nd-order)



Pedestrian Model

l goel

goal potential

+ Goals behave as attractors of heading
+ Obstacles behave as repellers of heading
- Velocity-based 'force’ model (2nd-order)

1 Goal

5 Braking
Lee (1976), Yilmaz & Warren (1995)
hzgding
¥ m
bé‘ﬁd
o goal

N

+ Tau-dot model

+ Null heading error

2 Obstacle 4 Moving obstacle

3 Moving target

+ Increase heading error + Avoid constant bearing

agent

- Constant bearing strategy



Binary Interactions:
Following

Alignment N Iil .' 'nl

dynamics H

9

- How do neighbors coordinate
their speed and heading?
- Local coupling



Binary Interactions: Conclusion 1:

Following Alignment Dynamics
1 "\ « Successfully model binary
Alignment i T interactions as simple DS

dynamics ﬂ - Vision model fits better
] ]

- Extend to multiple
- How do neighbors coordinate - . .
their speed and heading? interactions in crowd?

+ Local coupling

6 Speed

Rio, Rhea & Warren (2014)

Visual Control
Laws for Following

Dachner & Warren (2017}

7 Heading

Dachner & Warren (2014} o
Speed .
zntrol Wi
fomeli, ) =
" C
» Leader changes « Compared & models il 4 apanis
speed + Follower matches 1
pan nr = 0.68 the leader's speed e
delay = 420ms - " T coskenl
mean £ = 047 . iL
B - rdl fmaring
= sl — e
= Leader turns twice Po moesiatg —
mean x-r = 052 + Compared 4 models '
delay = 984 ms + Follower matches -

the leader's heading

Tiean § = 0,72



Acceleration (m/s 2}

6 Speed

Rio, Rhea & Warren (2014)

time (s)

- Leader changes
speed

mean X-r = 0.68
delay = 420ms

Xp = c(icL —JE:F)

- Compared 6 models
- Follower matches
the leader’s speed

meanr=0.67




Heading (deq)

/ Heading

Dachner & Warren (2014)

Sine ——— Leader
Follower

5 10 15
t(s)

- Leader turns twice

mean x-r = 0.92
delay = 984 ms

éF =-C Sin(¢L o)

« Compared 4 models
» Follower matches

the leader’s heading

meanr=0.72



Visual Control

Laws for Following
Dachner & Warren (2017)

Ahead Beside

(B=0) (B = 90°) Hypothesis: Null
both expansion and
Abearing, depending

on leader position
Speed
control { ) _ , .
Py ¥ = —csinB() — c,8
__._d)_.__.f\ h
« null expansion = null Abearing
p;%
Heading T
!

control b I

- null Abearing

b = s — cusinB(6)
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Perturb
expansion
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Perturb
bearing
(307

Perturb

both

(-60°)
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8 Perturb expansion or bearing
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Behavioral model:
Vision-based model:
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Mean Final Speed (m/s)
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Modeling Results

Final Speed Final Heading
40
gB&
g
P j|»*mz~ %30
._%
® 25
z
220
L
=&~ Participant S =~ Participant
=n=Behavioral Model g 15[ e Behavioral Model
== Vision Model == Vision Model
. E—— 10 .
Exp 0 Cont 1 4
Expansion Distance (m)
- Asymmetry in response - Decreased response with
to expansion distance

- Vision model fits human data better
than behavioral model (p<.001)

« Jointly null expansion and Abearing,
depending on leader position
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Local Neighborhood

- How is a pedestrian
influenced by multiple
neighbors?

- Many models, little evidence

| 5 _“l\_,

\\-.,____ - ___./ : : |
Heuristics
Alignment ‘i &

) |

Position-based

e
-
-




Manipulate
Virtual Crowd

perturb heading: + 10°

f final

heading

« Perturb heading or speed of
subset S

« Measure lateral deviation or
speed change

« Participant "walks with" crowd —
g



Exp. 1: Superposition
(Rio & Warren, 2014)

+ How are multiple neighbors combined?

eptthiey L griteyy

o~ ff’; iy 11111-,
Far zone: 3.5m

Mear zane: 1.5

« Crowd = 17 neighbors

« ary subset size (§ = 0-12)
- Twa distance zones

= M=10

Manipulate
Virtual Crowd

- Participant “walks with" crowd

+ Perturb heading or speed of
subset 5

+ Measure lateral deviation or
speed change

-

perturb heading: + 10°

Exp. 2: Metric or
Topological Neighborhood?

(Trent Wirth)

L] T A"r

£ o B B I F

L T T B
Lz Dengity: High Densicy:

SERGNGEr respone e dker response

+ Crowd = 17 neighbors
= Perterb nearest neighbors (5<0,2,4)

= Vary density, hold NN at constant distance
- H=12

i,

Exp 3: Fixed
or Variable Radius?

(Emilly Richrmond & Trent Wirth)

Em cE s
ﬁﬂ-ﬁﬂ”

.

'I'f' t

- Wary crowd distance (2-Bm)
= Vary crowd size (248)

= Perturb all

- N-12

Exp. 4: Double
Decay Hypothesis
* rﬂ T ] ::!:pi:nd::::i[h distance

gradual decay with distance
| i crowd

- Nelghborhood results from two decay rates
- variable radius



Exp. 1: Superposition
(Rio & Warren, 2014)

- How are multiple neighbors combined?

TRARY
5 e '"'w::l i

Near zone: 1.5m

7 Far

- Crowd = 12 neighbors

- Vary subset size (S = 0-12)
- Two distance zones

- N=10

ssssssss
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Ax (m)

-0.2

0.8 -

0.6 -

04 -

0.2 -

Results

Perturb Heading

Lateral Deviation

—#— Mear
—=B- Far
e Mean

Lo
3 6 s 1

Number of Perturbed Neighbors (S}

ASpeed (m/s)

Perturb Speed

Speed Change

0.3 4

—4—Near
—B= Far
0.2 -
0.1 -
0
01 Number of Perturbed Neighbors (S)

- Response proportional to S (p<.001)
- consistent with superposition
- Decreases with distance (p<.001)



Back—Front (m)

Decay with Distance:

Human Swarm
(Rio & Warren, 2014)

Mean AHeading (6 min) Coupling Strength
_61— — 1 — B —_ 1 *
40deg 5 a
= 08 Wi = ad;
3 o 2 e
— d; = distance
| 30 E 0.6 W= I.3m= decay
0 | |_ .l]::J a=19.2 = constant
l25 g 0.4
| x
3] = | 20 S
= 2 o2
“m 15 —
ol - 0
-5 i 0 3 6 0 1 2 3 4
Left—Right (m) Distance (m)

- Coupling strength decays
exponentially with distance (r=4m)

» Occlusion, perspective?



Back-Front (m)

Coupling Asymmetry:

Human Swarm
Rio & Warren (2014)

Mean Time Delay

- Windowed X-corr
- 1s traveling window

Left-Right (m)

- Unidirectional coupling
- 180" field of view



Neighborhood Model

. K
e ¢p=—£Zwisin(qbi—¢p)

n
> wili =)
i=1

] Inl 7, B Ty =
k = 0.81 = heading gain

- Alignment dynamics + neighborhood ¢ = 1.87 = speed gain
- Weighted average of neighbors

- Weight decays exponentially with distance

« Unidirectional coupling

S|a

- soft radius (4 m)




Heading (deg)

12
10

A N O N B O

Model Simulations
(Greg Dachner)

Mean Time Series per Condition

— Model
w10 Participants

Near, S=9
mean r = 0.94

- Heading perturbations: mean r = 0.82
« Speed perturbations: mean r =0.89



Mean Final Heading (deg)

Simulation Results

Final Heading

12
vt T
8 F
6 =
4|
5l " —#-Near- Data
v Near - Model
o ~8-Far - Data
I s Far - Model
2 - : :
0 3 5 g9 12

Number of Perturbed Neighbors (S)

95% Cl for data

Mean Final Speed (m/s)

Final Speed

4 Near - Data
s Near - Model
—®-Far - Data
e Far - Model

3 6 9 12
Number of Perturbed Neighbors (S)

- Neighborhood model
accounts for Exp. 1



Exp. 2: Metric or
Topological Neighborhood?

(Trent Wirth)

/

v
,i.’ T i T
Low Density: High Density:
stronger response weaker response

« Crowd = 12 neighbors
- Perturb nearest neighbors (5=0,2,4)

- Vary density, hold NN at constant distance
« N=12

it



Final Heading (deg)
M

-1

-2

Results

—8-Low

—-High

A E—

Subset S Perturbed

- Greater response at low density
(p<.05, interaction p<.05)

- Contrary to topological, consistent
with metric neighborhood



Exp 3: Fixed
or Variable Radius?

(Emily Richmond & Trent Wirth)

m/ o/ JT; 11 1 ’
{ f oy T'ﬂ'
2m
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T T C
L i

- Vary crowd distance (2-8m)
- Vary crowd size (2,4,8)

- Perturb all

« N=12



Results

o
=)

Final Heading (deg)

4

Distance [m)

- Response decreases with distance (p<.0001)
» Radius 11-14 m!

- No effect of crowd size (ns)
« Supports weighted average

« Not a fixed radius at 4m



Exp. 4: Double
Decay Hypothesis

rapid decay with distance
within crowd

gradual decay with distance
to crowd

T

- Neighborhood results from two decay rates
- variable radius




Manipulate distance to
and within crowd

Zaorm) 'l' wo" ;w
Middle 'ﬂlﬂ 'ﬂ'

(8m)

(6m)

Middle
(4m)

Near

S B BN N ]

'I‘:ﬂ ,H.’T Tﬂ

p T

ol

T (6m)

S R i

« Crowd = 12 neighbors

- Perturb near, middle, far ring (5=4)
- Vary distance to first ring (2, 4, 6m)
- N=10

6m



Results

Crowd Distance
. ——2m
T3]
9 7.0 —A—4m
E 6.0 -G
£ 50
O 4.0
T
= 30
=
iz 2.0
1.0 !\‘\
0.0
b 4 6 2 10
Ring Distance (m)

« Gradual decay to first ring (p<.01)
- Rapid decay within crowd (p<.001)
- Interaction (p<.001)

» Consistent with double
decay hypothesis




Double-Decay Model

mn
_____ " k )
-7 L“n\\ pr =_£ WiSI?'I((I)i—(;bp)
T i=1
H = ’ S
5 'II w; = ( a
III d;: !il N L en(d) 4 pw(di—dnn) 4 g
dn \I 11 n= 0.4 decay rate to NN
e ® = 1.2 decay rate within crowd
'n‘ a =9.2 scaling constant

Two exponential decay rates:

- gradual decay to NN (r=11m): perspective?
- rapid decay within crowd (r=4m): occlusion?
- serves purpose of a topological neighborhood

atafion Al

Conclusiol
Neighborhooc

- Superposition
» Metric radius, dou
+ Unidirectional cot

« Can model predict
motion?



Final Heading (deg)

Simulation Results

Exp. 3 Exp. 4

10 4
g —Im
am
8 4
—1r
’%‘ " = = 2m Model
B 61 A Mode |
o
z 3 - = 6m Madel
[+1s]
= 4 A
BN b=l
m 4
= 2 Madel L 3
= 4 Madel E 2 4
& Madel - N
o - T =
1.8 E a4 B 2 o 2 4 5 8 10
Distance {m} Ring Distance (m)

» Decay to NN Decay to and within crowd

- Double-decay model
characterizes neighborhood



Double-Decay Model

) k<
[ ""F___-‘_“"‘-..‘_\ ¢p = —;ZWiSin(‘;bi —pr)
\\‘ i=1

e 'nl \\‘ N ( a
T t b \enldd 4 gwldi—dyn) + g

. . _,,-""'f-f.v.-\-\l ‘; n = 0.4 decay rate to NN
""" P T @ = 1.2 decay rate within crowd
In' a = 9.2 scaling constant

Two exponential decay rates:
- gradual decay to NN (r=11m): perspective?
- rapid decay within crowd (r=4m): occlusion?
- serves purpose of a topological neighborhood

Conclusion 2:
Neighborhood Model

- Superposition
- Metric radius, double decay

- Unidirectional coupling

- Can model predict collective
motion?
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The Sayles Swarm

T SURVIVED. ..

THEQAYT, ES
SWARM

S JUTY 16 - 19 2012

« 16 cameras, 12m x 20m
- N=20, key scenarios



Conclusion 3:

Th i
e Sayles Swarm Crowd Dynamics

« Alignment dynamics +
neighborhood model =
local interactions

L SURVIVEDL,

"ORAYTES

SWARM - Model reproduces individual
trajectories and collective
Ne20 key cenaros motion
V.
N
4 <

2 Counterflow

1 Human Swarm

Exploratory Simulations

» Define initial conditions, let go, all agents interact
= Wary initial density, initial heading range

+ Compare single and double decay models « Two groups, pass through

= Weer L/R, stay together, 2 min « Spontanegus lane formation
« N=16-10, density = 1m, Zm

» Reproduce at local and global levels?

: Lanes ermerge from following
o] neighbors + avoiding obstacles

=

= Coherent mation over a wide range of
initial conditions

= Wider range with Double Decay than
Single Decay model



1 Human Swarm

- Veer L/R, stay together, 2 min
- N=16-20, density = 1m, 2m
- Reproduce at local and global levels?

Gcbally Coherent Maban

Simulation 1 % mubation 1 Local: Ingreicual Traectories

b,



Simulation 1 Simulation 2

Simulate interacting agents
- initialize all with human data
- 4 'leaders’ go to final positions

- remove moving obstacle
- generates collective motion

Components:

- alignment, moving obstacle, braking



Frequency

Globally Coherent Motion

Data Model
im [ mean=22° mean = 17"
3000 2m [ mean =24 3000 mean = 21
>
&)
2000 qc, 2000
3
o
o
1000 L 1000
0 = 0 S—— .
0 50 100 150 200 250 0 50 100 150 200
Dispersion (deg) Dispersion (deg)

- 38 10s segments with continuous tracking of N28
- Initialize model with human data

- Dispersion = mean pairwise heading difference

- 3s traveling window

- Comparably coherent motion

250



Local: Individual Trajectories

Path Speed Heading

8 }
_s| d
E =
> 2

al &

2 +

L - ,05 " . i " a 100 L a . "
2 0 100 200 300 400 500 0 200 400 600
Time (1/60 s) Time (1/60 s)

10

. @ r=.63 g
— E ]
E o 1 =
= O =]

. error = X 2.

.25m
2 - 0.5
-2 0 2 4 6 0 200 400 600 0 200 400 600 800
x(m) Time (s) Time (s)
- mean (10s) = 1.2m - mean r=.57 - mean r=.95

- Simulate each participant separately, with neighbors as input
- Model captures individual trajectories



Exploratory Simulations

« Define initial conditions, let go, all agents interact
« Vary initial density, initial heading range
« Compare single and double decay models

Sample Simulations
P Parameter Map
5 i
. . S0 of Final Heading
Birgls e S B
decay i — ’ Siny gl e Decay Double Decay S0 (deg)
- e m
R et A |I
Davble i o f
decs s 3 ¥
" l
P
VAR =i —
% ‘.F ios
s |

- Coherent motion over a wide range of

initial conditions
- Wider range with Double Decay than

Single Decay model



Sample Simulations

Position Speed Heading

45 1.25 @ a5
. 5 g
Single - g § IPD 3m
=90 3 o ° Heading £30°
decay & s P Speed .5-1.5m/s
15 0.75 L a5
0 LAl 0.5 -a0
-30 -15 0 15 30 Q ] 10 15 20 25 30 a 5 10 15 20 25 30
¥ (m) Time (s) Time (s)
ou =1
45 + rnm: 45
2
Double i 5 IPD 3m
Ean = 0 . 5
decay = g Heading +30
g Speed .5-1.5m/s
15} T -45
0! . . —_— — -90 _—
-30 30 0 5 10 15 20 25 30 i} 5 10 15 20 25 30
Time () Time (s)
Clusters - \\.h_ g
- E 2 IPD 3m
S|n |_e Ego: s 1 s, . .
g = 3 > Heading 60
& 2 .
decay) | ors? $ Speed .5-1.5m/s
0 0.5 -80
-30 30 0 5 w0 15 20 25 30 0 5 o 15 200 25 30

t (s) t (s)



Initial Heading Range (deg)

Parameter Map
SD of Final Heading

Sing[e Decay Double Decay SD (deg)

e
O
H

40

w
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2 Counterflow

- Two groups, pass through
« Spontaneous lane formation

L Lanes emerge from following
: neighbors + avoiding obstacles

- When is another pedestrian
a neighbor or an obstacle?



Data Replay Simulation

Simulate interacting agents

- alignment, braking
« Opposing motion = moving obstacle
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Pattern Formation

- Phase transition: shoal --> school
- Aligned neighbors recruit more individuals,

pattern propagates
- Visual neighborhood as positive feedback?



Exp. 5: Noisy Neighbors

20° turn

T e X o
~ Y . |
e \.lnl'\il 1
™

- Add noise to neighbor headings (range = £0°- 90°)
about mean crowd direction (10°, 20° turn)

- As noise decreases, participant should align more
strongly with mean of virtual crowd

Concl
Positive
- Greater alig

neighborho:
stronger po

« Mechanism
formation



Final Heading (deg)

Results

; Mean Final Heading SD of Final Heading
. 14
£ | e -
So| m
(1]
% g -
2 et
s

5 8 N ‘,,9"
g 2 L-==="7 -

0 s o .

o° 30° 60° 90° oo 30° 60° 90°
Noise (deg) Noise {deg)

Participants align with mean  « But align more reliably with
of crowd, on average crowd over trials as noise
(p<.001) decreases (p<.001)

- Participants are more
variable than model,
due to sub-sampling or
biological noise



RMSE Between Model and Data
for Time Series of Heading
12

10

Mean RMSE (deg)
&3]

0° 30° 60° 90°
Noise (deg)

- Participants more closely align with mean of
neighborhood (model) within a trial as noise
decreases (p<.001). Sub-sampling?

« When neighbors are more aligned, the
participant is more strongly attracted
to the common motion



Exp. 5: Noisy Neighbors

' 20° turn
-~ N P
. A\ T o,
7 i) N fégﬁs{ ‘ I
T o\
) »\. " \T T 1 ]
s,

- Add noise to neighbor headings (range = =0°- 90°)
about mean crowd direction (10°, 20" turn)

- As noise decreases, participant should align more
strongly with mean of virtual crowd

uuuuu

Conclusion 4;
Positive Feedback
« Greater alignment within

neighborhood creates a
stronger positive feedback

» Mechanism of pattern
formation
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Next

- Extend vision-based model to crowd
- Visual neighborhood as +feedback

- temporal averaging, sub-sampling
- Network analysis of human swarm
- Generalize model to other scenarios
« Micro --> Mean Field --> Macro

1=58.58 = 1=60.358
t=1265

1=081s5

=285 —_
a5 .
1= 08 "
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=E; 4 h A ans
03
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